

Welcome to Maple’s documentation!

Mission

Maple is a project dedicated to creating an easier enviornment for new modders.

Documentation Contents

	Welcome to Maple’s documentation!

	Installation
	Installation of the Cinnamon Modloader

	Getting Started (for developers)
	Your first mod (Python)

Installation

Warning

This may change at any time as the project is still in development.

Installation of the Cinnamon Modloader

Prerequisites

	Python 3.9 (32-bit)

Installation

	Copy python39.dll from the python directory to the Geometry Dash directory.

	Download the latest release from the releases page.

	Extract the zip file to a folder of your choice.

	Load the cinnamon.dll with any dll loader.

Note

This process will be automated in the after the first full release.

Getting Started (for developers)

Your first mod (Python)

Setup

The first step in creating a mod is to create a new directory in
Geometry Dash/cinnamon/mods/. The name of the directory will be the name of
your mod.

Note

You may create a mod with a single file, but it is recommended to
create a directory for your mod to keep things organized.

For this example we will create a mod called button_test,
an example mod from the github repo. You can find more examples in the
examples directory.

We will create a file named button_test.py in the button_test directory.

The code

The first thing we need to do is import the cinnamon module.
This is the module that contains all the functions and classes that
are used to create mods. We will also import the nessessary modules
such as cocos2d, the game engine the game uses and geometry_dash,
the functions from the game.

import cinnamon
import cocos2d
import geometry_dash

Next we need to create a class that inherits from cinnamon.Mod.
This class will contain all the code for our mod.

class ButtonTest(cinnamon.Mod):
 pass

Now we need to create a function that will be called when the mod is loaded,
the __init__ function. This function will be called when the mod class is created.

We also need to call the __init__ function of the cinnamon.Mod class to
ensure that our mod is loaded correctly.

...

class ButtonTest(cinnamon.Mod):
 def __init__(self):
 cinnamon.Mod.__init__(self)
 prnt("Button Test mod loaded!")

One last thing before we can test our basic mod.

We need to register our mod with cinnamon.
We do this by calling cinnamon.register_mod and passing our mod class as an argument.

...

class ButtonTest(cinnamon.Mod):
 def __init__(self):
 cinnamon.Mod.__init__(self)
 print("Button Test mod loaded!")

cinnamon.register_mod(ButtonTest)

Testing

Now try opening the game and see if your mod works.
Debug versions of cinnamon automatically come with a
console that you can use to print messages to.

If you see the message Button Test mod loaded! in the console then your mod is working!

You might notice that no buttons have been added to the game yet.
We will add buttons in the next section.

Adding buttons

Now that we have a basic mod working we can add some buttons to the game.
Before we can add buttons we need to create a new class that inherits from
geometry_dash.MenuLayer. This class contains all of the code for the menu.

To add this button we need to override the init function
of MenuLayer by hooking it.

This is how it is done in cinnamon.

...

class MenuLayer(geometry_dash.MenuLayer):
 @cinnamon.hook(geometry_dash.MenuLayer.init) # Hook the init function
 def init(self):
 self.initO() # we need to call the original function so the rest of the menu is loaded

 # TODO: Add buttons here

class ButtonTest(cinnamon.Mod):
 def __init__(self):
 cinnamon.Mod.__init__(self)
 print("Button Test mod loaded!")

...

We can now add our button to the menu.

Our button needs to have a sprite, a position and a callback.’

A callback is the code that will run when the button is pressed.

For it to work, our button needs to be in a CCMenu, which
is a cocos2d class that handles buttons and allows them
to be clicked.

import cinnamon
import cocos2d
import geometry_dash

class MenuLayer(geometry_dash.MenuLayer):
 @cinnamon.hook(geometry_dash.MenuLayer.init) # Hook the init function
 def init(self):
 result = self.initO() # we need to call the original function so the rest of the menu is loaded

 # Create a sprite for our button
 sprite = cocos2d.CCSprite.create("GJ_button_01.png")

 # Create a button with our sprite

 button = geometry_dash.CCMenuItemSpriteExtra.create(sprite, self, self.button_callback)

 # Create a CCMenu with our button

 menu = cocos2d.CCMenu.create(button)
 menu.addChild(button)

 # Add the menu to the layer

 self.addChild(menu, 99)

 director = cocos2d.CCDirector.sharedDirector() # Get the director
 win_size = director.getWinSize() # Get the size of the window

 menu.setPosition(win_size.width / 2, win_size.height / 2) # Set the position of the menu to the center

 return result

 # this is the callback for our button
 def button_callback(self, sender):
 print("Button pressed!")

class ButtonTest(cinnamon.Mod):
 def __init__(self):
 cinnamon.Mod.__init__(self)
 print("Button Test mod loaded!")

cinnamon.register_mod(ButtonTest)

Final Test

Now try running the game again and see if your button works.

If you see the message Button pressed! in the console then your button is working!
Congratulations, you have created your first mod!

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Maple’s documentation!

 		
 Installation

 		
 Installation of the Cinnamon Modloader

 		
 Prerequisites

 		
 Installation

 		
 Getting Started (for developers)

 		
 Your first mod (Python)

 		
 Setup

 		
 The code

 		
 Testing

 		
 Adding buttons

 		
 Final Test

_static/minus.png

_static/plus.png

_static/file.png

